The article discusses methods for estimating the parameters of three types of piecewise linear regressions based on the least modulus method. For the first time, a regression model is considered, which is the sum of piecewise linear regressions with the minimum and maximum contribution of independent variables. The description of the developed software package for the automated estimation of the parameters of these models is given.

1. Ayvazyan S.A., Mkhitaryan V.S. Applied statistics and fundamentals of econometrics. – M .: Unity, 1998 . – 1022 p.

2. Draper N., Smith G. Applied regression analysis. Book 1. In 2 book. – M.: Finance and Statistics, 1986. – 366 p.

3. Draper N., Smith G. Applied regression analysis. Book 2. In 2 book. – M.: Finance and Statistics, 1986. – 351 p.

4. Seber J. Linear regression analysis. – M .: Mir Publishing House, 1980. – 456 p.

5. Dougherty K. Introduction to Econometrics. – M .: INFRA-M, 2009 . – 465 p.

6. Noskov S.I., Lonshakov R.V. Identification of parameters of piecewise linear regression // Information technologies and problems of mathematical modeling of complex systems. – 2008. – No. 6. – Pp. 63-64.

7. Noskov S.I. Technology for modeling objects with unstable functioning and uncertainty in data. – Irkutsk: Oblinformpechat. – 1996. – 320 p.

8. Ilyina N.K., Lebedeva S.A., Noskov S.I. Identification of parameters of some non-smooth regressions // Information technologies and problems of mathematical modeling of complex systems. – 2016. – No. 17. – P. 111.

9. Noskov S.I. The criterion of “consistency of behavior” in the regression analysis // Modern technologies. System analysis. Modeling. – 2013. – No. 1 (37). – Pp. 107-110.

10. Noskov S.I. Construction of econometric dependencies taking into account the criterion of “consistency of behavior” // Cybernetics and system analysis. – 1994. – No. 1. – P. 177.

11. Kreinovich V., Lakeyev A.V., Noskov S.I. Approximate linear algebra is intractable // Linear Algebra and its Applications. – 1996. – T. 232. – No. 1-3. – Pp. 45-54.

12. Bazilevsky M.P., Noskov S.I. Algorithm for the formation of a multitude of regression models by transforming a dependent variable // International Journal of Applied and Fundamental Research. – 2011. – No. 3. – Pp. 159-160.

13. Noskov S.I. Point characterization of the Pareto set in a linear multicriteria problem // Modern Technologies. System analysis. Modeling. – 2008. – No. 1 (17). – Pp. 99-101.

14. Lakeyev A.V., Noskov S.I. A description of the set of solutions of a linear equation with interval defined operator and right-hand side // Doklady Mathematics. – 1993. – T. 47. – No. 3. – P. 518.

15. Lakeev A.V., Noskov S.I. The least module method for linear regression: the number of zero approximation errors // Modern Technologies. System analysis. Modeling. – 2012. – No. 2 (34). – Pp. 48-50.

16. Noskov S.I. A generalized criterion for the consistency of behavior in regression analysis // Information technology and mathematical modeling in the management of complex systems. – 2018. – No. 1 (1). – Pp. 14-20.

17. Noskov S.I. On the method of mixed estimation of linear regression parameters // Information technologies and mathematical modeling in the management of complex systems. – 2019 . – No. 1 (2). – Pp. 41-45.

18. Noskov S.I. Identification of parameters of a piecewise linear risk function // Transport infrastructure of the Siberian region. – 2017. – T. 1. – Pp. 417-421.

19. Noskov S.I., Butin A.A. Methodological support for assessing the level of vulnerability of objects of informatization // Information technologies and problems of mathematical modeling of complex systems. -Irkutsk: IrGUPS, 2015. -№. 14.-C. 38-48.