Receipt date: 
17.11.2022
Bibliographic description of the article: 

Bazilevskiy M.P., Karaulova A.V. A method for measuring the nonlinearity degree of multivariate polynomial and posinomial regression models // Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: ehlektronnyj nauchnyj zhurnal [Information technology and mathematical modeling in the management of complex systems: electronic scientific journal], 2022. No. 4(16). P. 1-9. DOI: 10.26731/2658-3704.2022.4(16).1-9 [Accessed 17/12/22].

Year: 
2022
Journal number: 
УДК: 
519.862.6
DOI: 

10.26731/2658-3704.2022.4(16).1-9

Article File: 
Pages: 
1
9
Abstract: 

When constructing regression models, a balance should be struck between their accuracy and complexity. Complex models are often more accurate than simple ones, but they are more cumbersome, hard to see and inconvenient to use, which makes their interpretation very difficult. It becomes problematic to interpret models even if their structural specification is significantly non-linear. This article is devoted to the problem of estimating the degree of nonlinearity of regression models. Previously, the authors proposed a method for estimating the degree of nonlinearity for polynomial regressions with one explanatory variable. In this paper, this method is generalized for multivariate polynomial regressions. For the first time, a posinomial regression model has been introduced, which generalizes many known forms of relation between variables, in particular, a polynomial one. The proposed method for measuring the nonlinearity degree of polynomial regressions can also be applied to posinomial models.

List of references: 

1. Samarskiy A.A., Mikhaylov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery [Mathematical modeling: Ideas. Methods. Examples]. Moscow, Fizmatlit, 2001. 320 p.

2. Khakimzyanov G.S., Chubarov L.B., Voronina P.V. Matematicheskoe modelirovanie [Mathematical modeling]. – Novosibirsk, RITs NGU, 2014. 263 p.

3. Zvonarev S.V. Osnovy matematicheskogo modelirovaniya [Fundamentals of mathematical modeling.]. Ekaterinburg, Izd-vo Ural. un-ta, 2019. 112 p.

4. Ayupov V.V. Matematicheskoe modelirovanie tekhnicheskikh sistem [Mathematical modeling of technical systems]. – Perm, IPTs «Prokrost'», 2017. 242 p.

5. Sokolov A.V., Voloshinov V.V. Vybor matematicheskoy modeli: balans mezhdu slozhnost'yu i blizost'yu k izmereniyam [Choice of mathematical model: balance between complexity and proximity to measurements]. International Journal of Open Information Technologies. 2018, no. 9, pp. 33-41.

6. Montgomery D.C., Peck E.A., Vining G.G. Introduction to linear regression analysis. John Wiley & Sons, 2021.

7. Draper N.R., Smith H. Applied regression analysis. John Wiley & Sons, 1998.

8. Noskov S.I., Bychkov Yu.A. Modifikatsiya nepreryvnoy formy metoda maksimal'noy soglasovannosti pri postroenii lineynoy regressii [Modification of the continuous form of the maximum consistency method in constructing linear regression]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [News of the Tula state university. Technical sciences]. 2022, no. 5, pp. 88-94.

9. Noskov S.I., Perfil'eva K.S. Programmnyy kompleks postroeniya lineynykh regressionnykh modeley metodom smeshannogo otsenivaniya [Software package for constructing linear regression models using the mixed estimation method]. Yuzhno-Sibirskiy nauchnyy vestnik [South Siberian Scientific Bulletin]. 2021, no. 3, vol. 37, pp. 38-42.

10. Noskov S.I., Khonyakov A.A. Programmnyy kompleks postroeniya nekotorykh tipov kusochno-lineynykh regressiy [A software package for constructing some types of piecewise linear regressions]. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information technology and mathematical modeling in the management of complex systems]. 2019, no. 3, vol. 4, pp. 47-55.

11. Noskov S.I. Kusochno-lineynaya svertka variantov regressionnoy modeli ob"ekta [Piece-linear convolution of options of the object regression model]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii [Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies]. 2022, no. 3, pp. 15-21.

12. Bazilevskiy M.P. Metod postroeniya neelementarnykh lineynykh regressiy na osnove apparata matematicheskogo programmirovaniya [A method for constructing non-elementary linear regressions based on mathematical programming]. Problemy upravleniya [Control Sciences]. 2022, no. 4, pp. 3-14.

13. Bazilevskiy M.P. Kriterii nelineynosti kvazilineynykh regressionnykh modeley [Nonlinear criteria of quasilinear regression models]. Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technology]. 2018, no. 4, vol. 23, pp. 185-195.

14. Bazilevskiy M.P. Kriterii nelineynosti mnogofaktornykh kvazilineynykh regressiy [Nonlinearity Criteria for Multifactorial Quasilinear Regressions]. Molodezh' i nauka: Aktual'nye problemy fundamental'nykh i prikladnykh issledovaniy [Youth and science: Actual problems of fundamental and applied research]. 2019, pp. 210-213.

15. Bazilevskiy M.P., Karaulova A.V. Vybor optimal'nogo sootnosheniya mezhdu tochnost'yu i nelineynost'yu pri postroenii kvazilineynykh regressionnykh modeley [Selecting the optimum relationship between accuracy and non-linearity in constructing quasi-linear regression models]. Vestnik kibernetiki [Proceedings in Cybernetics]. 2021, no. 4, vol. 44, pp. 63-70.

16. Karaulova A.V., Bazilevskiy M.P. Programmnyy kompleks postroeniya kvazilineynykh regressiy po kriteriyam tochnosti i nelineynosti [Software complex for constructing quasi-linear regressions according to the criteria of accuracy and non-linearity]. Ekonomika. Informatika [Economics. Informatics]. 2022, vol. 49, no. 1, pp. 121-133.\

17. Bazilevskiy M.P., Karaulova A.V. Issledovanie kriteriev nelineynosti additivnykh stepennykh regressiy [Study of non-linearity criteria for additive power regressions]. Informatsionnye i matematicheskie tekhnologii v nauke i upravlenii [Informational and mathematical technologies in science and management]. 2022, no. 3, vol. 27, pp. 162-173.

18. Karaulova A.V., Bazilevskiy M.P. Postroenie additivnykh stepennykh regressionnykh modeley so stepenyami v vide diskretnykh funktsiy vremeni [Construction of additive power regression models with degrees in the form of discrete time functions]. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information technology and mathematical modeling in the management of complex systems]. 2022, no. 2, vol. 14, pp. 1-7.\

19. Bazilevskiy M.P., Karaulova A.V. Otsenka stepeni nelineynosti polinomial'nykh regressionnykh modeley [Estimating the degree of nonlinearity for polynomial regression models]. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information technology and mathematical modeling in the management of complex systems]. 2022, no. 3, vol. 15, pp. 1-6.

20. Ayvazyan S.A., Mkhitaryan V.S. Prikladnaya statistika i osnovy ekonometriki. [Applied statistics and fundamentals of econometrics]. Moscow, Izdatel'skoe ob"edinenie «YuNITI», 1998.

21. Daffin R., Piterson E., Zener K. Geometricheskoe programmirovanie [Geometric programming]. Moscow, Mir, 1972. 311 p.

22. Noskov S.I., Bazilevskiy M.P. Postroenie regressionnykh modeley s ispol'zovaniem apparata lineyno-bulevogo programmirovaniya [Construction of regression models using mixed integer linear programming]. Irkutsk, IrGUPS, 2018. 176 p.