Receipt date: 
17.11.2022
Bibliographic description of the article: 

Arshinskiy L.V., Lebedev V.S Hypothesis contest for inductive inference based on non-strict probabilities // Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: ehlektronnyj nauchnyj zhurnal [Information technology and mathematical modeling in the management of complex systems: electronic scientific journal], 2022. No. 4(16). P. 10-15. DOI: 10.26731/2658-3704.2022.4(16).10-15 [Accessed 17/12/22].

Year: 
2022
Journal number: 
УДК: 
004.89+510.644
DOI: 

10.26731/2658-3704.2022.4(16).10-15

Article File: 
Pages: 
10
15
Abstract: 

The paper describes a method for selecting hypotheses of the form "If ..., then..." from several alternatives obtained using the Bacon-Mill joint method of agreement and difference, in conditions when the relevant information is unreliable and/or contradictory. Sources of information can be well-structured arrays: spreadsheets, relational databases, etc. The methodology is based on the concept of non-strict probability, which follows from the vector representation of truth for VTF-logics. The choice of a specific hypothesis is proposed to be carried out using measures of certainty and reliability, known in VTF-logics and also used for non-strict probabilities.

List of references: 

1. Arshinsky L.V., Lebedev V.S. Primenenie nestrogoj veroyatnosti v zadachah induktivnogo vyvoda [Application of non-strict probability in problems of inductive inference] // Aktual'nye voprosy prikladnoj diskretnoj matematiki. Sbornik nauchnyh trudov. Ser. «Diskretnyj analiz i informatika» [Actual questions of applied discrete mathematics. Collection of scientific papers. Ser. "Discrete analysis and computer science".]. Irkutsk, 2022. pp. 9-16. (in Russian).

2. Golenkov V.V., Stepanova M.D., Samodumkin S.A., Gulyakina N.A. Statisticheskie osnovy induktivnogo vyvoda: ucheb. posobie [Statistical bases of inductive inference: textbook].  Minsk: BGUIR, 2009, 202 p. (in Russian).

3. Kyburg H.E. Veroyatnost' i induktivnaya logika [Probability and Inductive Logic]. Мoscow: Izd-vo «Progress», 1978, 373 p. (in Russian).

4. Inductive Logic // Stanford Encyclopedia of Philosophy. URL: https://plato.stanford.edu/ entries/logic-inductive.

5. Inductive Inference // ScienceDirect. URL: https://www.sciencedirect.com/topics/ mathematics/inductive-inference.

6. Arshinskiy L.V. Prilozhenie logik s vektornoj semantikoj k opisaniyu sluchajnyh sobytij i ocenke riska [Application of logic with vector semantics to the description of random events and risk assessment] // Problemy analiza riska [Issues of Risk Analysis], 2005, vol.2, no. 3, pp. 231-248. (in Russian)/

7. Arshinskiy L.V. Vektornye logiki: osnovanija, koncepcii, modeli [Vector logic: foundations, concepts, models]. Irkutsk: Irkutskij gosudarstvennyj universitet [Irkutsk state university], 2007, 228 p. (in Russian)