Receipt date: 
24.09.2018
Year: 
2018
Journal number: 
УДК: 
519.862.6
Article File: 
Pages: 
21
28
Abstract: 

The article is devoted to the problem of detecting heteroscedasticity in the remnants of the regression model, estimated using the method of least squares. A well-known procedure for the Glaser test is considered, which assumes the construction of auxiliary dependencies of moduli of regression residuals on transformations of independent variables. Parametric estimates and determination criteria for auxiliary regressions in the case of standardized regression estimation are found. The results obtained allowed us to formulate the Glaser test procedure for a given scenario as a task of partial-Boolean linear programming.

List of references: 

1. Kremer N.SH., Putko B.A. Ekonometrika [Econometrics]. Moscow: YUNITI-DANA, 2002, 311 p.

2. Eliseeva I.I., Kurysheva S.V., Kosteeva T.V. Ekonometrika [Econometrics]. Moscow: Finansy i statistika, 2007, 576 p.

3. Bazilevskij M.P. Svedenie zadachi otbora informativnyh regressorov pri ocenivanii linejnoj regressionnoj modeli po metodu naimen'shih kvadratov k zadache chastichno-bulevogo linejnogo programmirovaniya [Reduction the problem of subset selection when estimating a linear regression model by the ordinary least squares to the problem of mixed integer linear programming]. Modelirovanie, optimizaciya i informacionnye tekhnologii [Modeling, optimization and information technologies]. Voronezh, 2018, vol. 6, no. 1, URL: https://moit.vivt.ru/wp-content/uploads/2018/01/Bazilevskiy_1_1_18.pdf.

4. Noskov S.I. Tehnologija modelirovanija ob’ektov s nestabil'nym funkcionirovaniem i neopredelennost'ju v dannyh [Modeling technology for objects with unstable operation and data uncertainty]. Irkutsk: RIC GP «Oblinformpechat'» Publ., 1996, 321 р.

5. Konno H., Yamamoto R. Choosing the best set of variables in regression analysis using integer programming. Journal of Global Optimization, 2009. Vol. 44, no. 2, pp. 272-282.

6. Bazilevskij M.P., Noskov S.I. Formalizaciya zadachi postroeniya linejno-mul'tiplikativnoj regressii v vide zadachi chastichno-bulevogo linejnogo programmirovaniya [Formalization of the problem of constructing linear-multiplicative regression in the form of the problem of mixed integer linear programming]. Sovremennye tekhnologii. Sistemnyj analiz. Modelirovanie. [Modern Technologies. System Analysis. Modeling]. Irkutsk, 2017, no. 3 (55), pp.101-105.

7. Ivanova N.K., Lebedeva S.A., Noskov S.I. Identifikaciya parametrov nekotoryh negladkih regressij [Identification of the parameters of some non-smooth regressions]. Informacionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnyh system [Information technologies and problems of mathematical modeling of complex systems]. Irkutsk, 2016, no. 17, pp. 111-114.