Дата поступления: 
20.01.2020
Год: 
2020
Номер журнала (Том): 
УДК: 
629.359; 629.052.9
DOI: 

10.26731/2658-3704.2020.1(6).28-36

Файл статьи: 
Страницы: 
28
36
Аннотация: 

The article proposes the option of automation of transportation of baggage of passengers and cargo inside transport nodes. This is especially true for slow-moving passengers. General characteristics of universal load balancing trolley and main tasks assigned to it are described. A description of the mathematical model of the proposed trolley is given. Simulation computer model is used to analyze control system of this trolley with PID control of balancing process of initially unstable control object. Different typical parameters of transported goods and external disturbances are considered. The results of the study indicate the shortcomings of this control method for the task under consideration. You cannot also use other known methods for this control task based on a priori object parameter information. As an inference, it is proposed to build an adaptive control system.

Список цитируемой литературы: 
  1. Ilovajskij N.D., Kiselyov A.N. Servis na transporte [Service on transport]. Moscow. Transport, 2003,-584 p.
  2. Programma povy`sheniya kachestva transportnogo obsluzhivaniya passazhirov v 2017-2019 godax. Rasporyazhenie ot 24 marta 2017 goda N 543r [Program to improve the quality of passenger transport services in 2017-2019. Order dated March 24, 2017 No. 543p.]. OAO "Rossijskie zhelezny`e dorogi".
  3. K.J.Astrom, T.Hagglunв Advaced PID Control. ISA-The Instrumentation, Systems, and Automation Society. 2006. 460 p.
  4. Formal`skij A.M. Upravlenie dvizheniem neustojchivy`x ob``ektov [Controlling the Movement of Unstable Objects]. Moscow. FIZMATLIT. 2012. 232 p.
  5. Ivojlov A.Yu., Zhmud` V.A., Trubin V.G. Razrabotka sistemy` avtomaticheskoj stabilizacii v vertikal`nom polozhenii dvuxkolesnoj platformy` [Development of automatic stabilization system in vertical position of two-wheeled platform]. Avtomatika i programmnaya inzheneriya. 2014.No2. P. 15-21.
  6. Fedorov D.S., Ivojlov A.Yu., Zhmud` V.A., Trubin V.G. Razrabotka sistemy` stabilizacii ugla otkloneniya balansiruyushhego robota [Development of the balancing robot deflection angle stabilization system]. Avtomatika i programmnaya inzheneriya. 2015. No2. P. 16-34.
  7. Pavlenko Yu.G. Lekcii po teoreticheskoj mexanike [Lectures on theoretical mechanics]. Moscow.: Fizmalit, 2002. 392 p.
  8. Ivojlov A.Yu., Zhmud` V.A., Trubin V.G., Rot G. Poluchenie zhelaemogo kachestva perexodny`x processov sistemy` stabilizacii dvuxkolesnogo balansiruyushhego robota na osnove chislennoj optimizacii [Obtaining the Desired Transition Quality of a Two-Wheeled Balancing Robot Stabilization System Based on Numerical Optimization]. Avtomatika i programmnaya inzheneriya. 2018.No2. P. 33-44.
  9. Shadrin G.K., Porubov D.A., Shadrin M.G. Sintez algoritma upravleniya dvizheniem dvuxkolesnogo robota metodom kompensacii dinamiki ob``ekta i vozmushhenij [Synthesis of two-wheeled robot motion control algorithm by method of object dynamics and disturbances compensation]. Avtomatika i programmnaya inzheneriya. 2017. No4. P. 10-17.
  10. Glushhenko A.I., Petrov V.A., Lastochkin K.A. Razrabotka nejrosetevogo regulyatora dlya upravleniya balansiruyushhim robotom [Development of a neural network regulator to control the balancing robot]. Intellektual`ny`e sistemy`, upravlenie i mexatronika. 2018. P. 72-76.