10.26731/2658-3704.2020.3(8).45-55
An electric drive of a coiler with neuro-control is proposed for coiling rolled metal into coils of a cold rolling mill, which allows maintaining a constant linear winding speed. This ensures constant strip tension and thickness. In the mathematical model of the electric drive, the increase in the moment of inertia of the mechanical part of the electric drive during the winding process is taken into account. The calculation of the required speed of rotation of the electric motor for stabilization of the linear speed of the strip is given and the law of regulation of the speed is proposed, which provides the necessary values of the speed. To implement the nonlinear gain of the regulator, it is recommended to use neurocontrol.
1. McCulloch W. S., Pitts W. A logical calculus of ideas immanent in nervous activity // Bulletin Mathematical Biophysics. 1943. Vol. 5. P. 115-133.
2. Omatu S. Nejroupravlenie i ego prilozheniya. Kniga 2 [Neurocontrol and its applications. Book 2] / Sigeru Omatu, Rubiya YUsof, Mazuki Halid. Per. s angl. N.V. Batina pod red. A.I. Galushkina, V.A. Ptichkina. M.: Radiotekhnika, 2000. 272 p.
3. Hajkin S. Nejronnye seti: polnyj kurs [Neural networks: a complete course]. 2-e izdanie: per. s angl. M.: Izdatel'skij dom «Vil'yams», 2006. 1104 p.
4. Terekhov V.A. Nejrosetevye sistemy upravleniya [Neural network control systems] Terekhov V.A., Efimov D.V., Tyukin I.YU. M.: Vysshaya shkola, 2002. 183 p.
5. Radionov A.A. Avtomatizirovannyj elektroprivod namotochno-razmotochnyh ustrojstv agregatov prokatnogo proizvodstva [Automated electric drive of winding and unwinding devices for rolling production units]. A.A. Radionov, A.S. Karandaev. Magnitogorsk: MGTU im. G.I. Nosova, 1999. – 131 s.
6. Gavrilyuk K.YA., Chernogub N.A., Baran N.M., Limonov L.G. Struktury pryamogo regu-lirovaniya natyazheniya namotochno-razmotochnyh mekhanizmov [Structures for direct tension control of winding and unwinding mechanisms] // Vestnik Nac. Tekhn. un-ta «HPI» [Bulletin of the National Technical University "KhPI"]. Problemy avtomatizirovannogo elektroprivoda: sb. nauch. tr. [Problems of an automated electric drive: collection of scientific papers]. 2013. №36(1009). P. 282-283.
7. Sinickij O.V. Elementy sovremennyh tekhnologicheskih sistem dlya obespecheniya geometrii i formy listovogo prokata [Elements of modern technological systems to ensure the geometry and shape of sheet metal] / O.V. Sinickij, P.P. Poleckov // Kalibrovochnoe byuro. – 2015. – №6. – P. 72-99.
8. Chertov A.D. Primenenie sistem iskusstvennogo intellekta v metallurgicheskoj promyshlennosti (obzor) [Application of artificial intelligence systems in the metallurgical industry (overview)] // Metallurg. – №7. – P.32-37.
9. Sologubov A.YU. K voprosu ispol'zovaniya iskusstvennyh nejronnyh setej v sistemah upravleniya elektroprivodami peremennogo toka namotochno-razmotochnyh mekhanizmov stanov holodnoj prokatki [On the use of artificial neural networks in control systems of AC electric drives of winding and unwinding mechanisms of cold rolling mills] / A.YU. Sologubov, V,N. Faryma // Elektrotekhnika: setevoj elektronnyj nauchnyj zhurnal [Electrical Engineering: Network Electronic Scientific Journal]. – 2017. – T.4, №1. – P.24-37.
10. Belov M.P. Teoriya, informacionnoe i programmnoe obespechenie avtomatiziro-vannyh elektroprivodnyh sistem tekhnologicheskih mashin i kompleksov [Theory, information and software for automated electric drive systems of technological machines and complexes]: dis. … dokt. tekhn. nauk: 05.09.03 / Belov Mihail Petrovich; St.-Pt. Gos. Elektrotekhn. un-t «LETI». – Sankt-Peterburg, 2016. – 435 p.
11. Buyankin V.P. Nejrosetevye metody povysheniya tochnosti sistem upravleniya tekh-nicheskimi ob"ektami s nelinejnymi i nechetkimi harakteristikami [Neural network methods for increasing the accuracy of control systems for technical objects with nonlinear and fuzzy characteristics]: dis. … dokt. tekhn. nauk: 05.13.01 / Buyankin Viktor Mihajlovich; NII vych. kompleksov im. M. A. Karceva. – M.: 2013. – 405 p.
12. He F. Fuzzy Control with Adjustable Factors in Tension Control System / F. He, J. Han, Q. Wang // Advanced Materials Research. – 2014. – Vol. 902. – P. 201-206. DOI: 10.4028/www.scientific.net/AMR.902.201
13. Yan J. Research on Tension Control System of Filament Winding Machine / J. Yan, Qiu Ju Zhu // Advanced Materials Research. – 2012. – Vols. 383-390. – P. 7631-7636. DOI: 10.4028/www.scientific.net/AMR.383-390.7631.
14. Li J. Research on Unwinding Tension System Control Based on Inverse System Theory / J. Li, X. Mei, S. Liu // Applied Mechanics and Materials. – 2011. – Vols. 44-47. – P. 2822-2826. DOI: 10.4028/www.scientific.net/AMM.44- 47.2822.
15. Du Y.H. Speed Control System Design of Winding Mechanism for Composite Films // Key Engineering Materials. – 2010. – Vols. 426-427. – P. 417-421. DOI: 10.4028/www.scientific.net/KEM.426-427.417.
16. Gassmann V. H∞ unwinding web tension control of a strip processing plant using a pendulum dancer / V. Gassmann, D. Knittel, R. Prabhakar // American Control Conference Hyatt Regency Riverfront (St. Louis, June 10-12 2009). – St. Louis, MO, USA, 2009. DOI: 10.1109/ACC.2009.5160554.
17. Wang Y. Research on Tension Control Model for Traction and Take-up System of Loom / Y. Wang, J. Huang, H. Chen // Advanced Materials Research. – 2013. – Vol. 627. – P. 444-448. DOI: 10.4028/www.scientific.net/AMR.627.444.
18. Li Z. Tension Control System Design Of A Filament Winding Structure Based On Fuzzy Neural Network // Engineering Review. – 2015. – Vol. 35, Is. 1. – P. 9-17.
19. Medvedev V. S., Potemkin V.G. Nejronnye seti. MATLAB 6. [Neural networks. MATLAB 6]/ V.S. Medvedev, V.G. Potemkin; pod obshch. red. V. G. Potemkina. – M.: DIALOG-MIFI, 2001. – 630 p.