10.26731/2658-3704.2020.3(8).61-70
In the paper first considered of the influence of interval representation of truthfulness on the procedure of dynamic verification of rule-based knowledge bases (KB) of expert systems (ES) when using logic with vector semantics. It is shown that for the interval representation of the truth vector, abnormal values of the truth of the premises are stored and transmitted along the output chain: strict lie, uncertainty, and complete contradiction. It is shown that, as in the "point" case, for the interval representation of the truth vector, anomalous truth-values generated by artifacts such as strict lie, uncertainty, and complete contradiction are stored and transmitted along the inference chain. If such hypotheses are detected, the output backtracking can identify and eliminate the source of the anomaly. The positive side of this approach is the use of the ES solver and the explanatory component for verification. No additional components are required other than the user answers simulator.
1. Nguyen, T.A. et al. Knowledge Base Verification // AI Magazine. 1987. V. 8. № 2. pp. 69-75.
2. Vermesan A.A. and Coenen F. (eds.) Validation and Verification of Knowledge Based System. Springer Science + Business Media, NY, 1999. DOI: 10/1007/978-1-4757-6916-6.
3. Davis R. Applications of Meta Level Knowledge to the Construction, Maintenance, and Use of Large Knowledge Bases. Dept of Computer Science, Stanford Univ., 1976. 291 p. STAN-CS-76-552a
4. Hamilton, D. State-of-the-practice in knowledge-based system verification and validation / D. Hamilton, K. Kelley, C. Culbert // Expert Systems with Applications. 1991. 3, pp. 403-410.
5. Benbasat, I. A framework for the validation of knowledge acquisition / I Benbasat, J. S. Dhaliwal, // Knowledge Acquisition, 1989. 1, pp. 215-233
6. Laurent, J-P. Proposals for a valid terminology in KBS validation. In B. Neuman, Ed. // Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92), 1992. pp. 829-834.
7. Preece A.D., Shinghal R., Batarekh A. Verifying expert systems: a logical framework and a practical tool // Expert systems with applications. 1992. Vol. 5. pp. 421-436.
8. Preece A.D. Evaluation of Verification Tools for Knowledge-Based Systems / A.D Preece, S. Talbot, L. Vignollet // Int. J. Hum.-Comput. Stud. 1997. V. 47. pp. 629-658.
9. Logunova, Ye.A. Obzor podkhodov k razresheniyu nedostatkov produktsionnoy bazy znaniy sistemy logicheskogo vyvoda [A review of approaches to resolving the shortcomings of the production base of knowledge of the logical inference system] / Ye.A. Logunova // Sovremennyye naukoyemkiye tekhnologii. 2015. № 9. pp. 46-48. (in Russian)
10. Smirnov V.V. Metody i sredstva verifikatsii baz znaniy v integrirovannykh ekspertnykh sistemakh [Methods and tools for knowledge bases verifying in integrated expert systems] (thesis of the candidate of technical sciences, Moscow, 2006) (in Russian).
11. Racunas, S.A. A case study in pathway knowledgebase verification / S.A. Racunas, N.H. Shan, N.V. Fedoroff // BMC Bioinformatic. 2006, 7: 196. Published online 2006 Apr 8. DOI: 10.1186/1471-2105-7-196.
12. Bindilatti, A. de A. Verification and validation of knowledge bases using test cases generated by restriction rules / A. de A. Bindilatti, A.E.A da Silva // International Journal of Artificial Intelligence and Expert Systems (IJAE). 2012. V. 3. Issue 4. pp. 117-125
13. Bobina V.A. Verifikatsiya i podtverzhdeniye pravilnosti (V&V) sistemy upravleniya bazoy znaniy s pomoshchyu formalnykh spetsifikatsiy [Verification and validation (V&V) of the knowledge base management system using formal specifications]// Simvol nauki. 2015. №5. С.17-20. (in Russian)/
14. Ternovoi M.Yu. Formalnaya spetsifikatsiya svoystv baz nechetkikh znaniy Mamdani na osnove metagrafa [Formal specification of properties of Mamdani fuzzy knowledge bases based on metagraph] // Bulletin of V.N. Karazin Kharkiv National University, series «Mathematical modeling. Information technology. Automated control systems». 2015. Issue 27. pp. 157-171 (in Russian).
15. Antoniou, G. Verification and Validation of Knowledge-Based Systems. Report on Two 1997 Events / G. Antoniou, F. van Harmelen, R. Plant, J. Vanthienen // AI Magazine: Workshop Report. 1998. V.19. № 3. pp. 123-126.
16. Andreyev A.M.. Berezkin D.V.. Simakov K.V. Osobennosti proyektirovaniya modeli i ontologii predmetnoy oblasti dlya poiska protivorechiy v pravovykh elektronnykh bibliotekakh [Design features of the domain model and ontology for searching for contradictions in legal electronic libraries]. – http://inteltec.ru/publish/articles/textan/ RCDL2004.shtml. (in Russian).
17. Arshinskiy V.L.. Proskuryakov D.P. Primeneniye ontologiy i rassuzhdeniya po pretsedentam dlya obrabotki konteksta v sobytiynom modelirovanii v issledovaniyakh energetiki [Application of ontologies and precedent reasoning for context processing in event modeling in energy research] // Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye. 2016. № 4 (52). pp. 94–100. (in Russian).
18. Proskuryakov D.P. Poisk protivorechij s pomoshch'yu strategii upravleniya produkciyami na osnove ontologii predmetnoj oblasti [The search for contradictions with management strategy of the production rules on the basis of domain ontology]// Trudy XIX Bajkal'skoj Vserossijskoj konferencii «Informacionnye i matematicheskie tekhnologii v nauke i upravlenii». CH. III. Irkutsk: ISEHM SO RAN, 2014. S. 166–170.(in Russian).
19. Proskuryakov D.P. Upravleniye razresheniyem konfliktov v produktsionnykh ekspertnykh sistemakh [Conflict resolution managing in rule-based expert systems], Vestnik of Irkutsk State Technical University, 2015, №8. pp 47-51. (in Russian).
20. Proskuryakov D.P. Integratsiya ontologicheskogo modelirovaniya i rassuzhdeniy po pretsedentam dlya obrabotki konteksta v issledovaniyakh energeticheskoy bezopasnosti [Integration of ontological modeling and reasoning in the precedents for the processing of context in studies of energy security] // Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. vol. 21 N 4(123). pp. 90-99. (in Russian)/
21. Nitezhuk M.S. Verifikaciya i poisk protivorechij v bazah znanij intellektual'nykh sistem [Verification and search of contradictions in knowledge bases of the intelligent systems]. Molodaya nauka Sibiri: ehlektronnyj nauchnyj zhurnal [Young science of Siberia: electronic scientific journal], 2018, no. 2. [Accessed 20/09/20] (in Russian).
22. Arshinskiy L.V., Nitezhuk M.S., Shlaustas R.Yu. Detection of contradictions in production knowledge base by means of VTF-logic // Information and mathematical technologies in science and management. 2019. № 2 (14). С. 62-68. DOI: 10.25729/2413-0133-2019-2-06
23. Arshinskiy L.V., Nitezhuk M.S., Shlaustas R.Yu. Vyyavleniye protivorechiy v produktsionnykh bazakh znaniy na osnove logik s vektornoy semantikoy [Detection of contradictions in rule-based knowledge base by means of logic with vector semantic] // Integrirovannyye modeli i myagkiye vychisleniya v iskusstvennom intellekte. Sbornik nauchnykh trudov IX-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii (Kolomna. 19-22 maya 2019 g.). – Pereslavl-Zalesskiy: Rossiyskaya assotsiatsiya iskusstvennogo intellekta. 2019. С. 114-120. (in Russian)
24. Arshinskiy L.V., Ermakov A.A., Nitezhuk M.S. Logic with vector semantic as a means of knowledge bases verification // Ontology of Designing. 2019. v. 9, №4 (34). pp. 510-521. DOI: 10.18287/2223-9537-2019-9-4-510-521.
25. Arshinskiy L.V., Ermakov A.A., Nitezhuk M.S. Complex verification of rule-based knowledge bases using VTF-logic// Ontology of Designing. 2020. v. 10, №1. pp. 112-120. DOI: 10.18287/2223-9537-2020-10-1-112-120.
26. Arshinskiy L.V. Intervalnoye otsenivaniye istinnosti v sistemakh avtomatizirovannykh rassuzhdeniy na osnove VTF-logic [Interval truth estimation in automated reasoning systems based on VTF-logic] / L.V. Arshinskiy // Identifikatsiya sistem i zadachi upravleniya: Trudy IV mezhdunarodnoy konferentsii SICPRO’05 [Elektronnyy resurs]. Moskva: IPU RAN im. V.A. Trapeznikova. 2005. 1 elektron. opt. disk (CD-ROM). pp. 1061-1074.
27. Arshinskiy L.V. Metody obrabotki nestrogikh vyskazyvaniy [Methods of processing of non-strict proposition]. Irkutsk: East-Siberian Institute of MIA of Russia. 1998. 40 p. (in Russian).