Noskov S.I. Povyshenie razreshayushchej sposobnosti sistemy ogranichenij v zadache linejnogo programmirovaniya [Increasing the resolution of the system of constraints in the problem of linear programming] // Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: ehlektronnyj nauchnyj zhurnal [Information technology and mathematical modeling in the control of complex systems: electronic scientific journal], 2023. No. 1(17). P. 65-68. DOI: 10.26731/2658‑3704.2023.1(17).65-68 [Accessed 31/03/23]

10.26731/2658‑3704.2023.1(17).65-68

The paper proposes a method for increasing the resolution of the system of constraints-inequalities in a linear programming problem. In this case, the idea underlying the concession method in solving vector optimization problems is used.

1. Lebedev A.M., Volkov A.K. A method for reducing the likelihood of aviation security threats by optimizing the composition of screening tools based on linear programming // Models, systems, networks in economics, technology, nature and society. - 2015. - No. 3 (15). - S. 144-150.

2. Shipitsyna R.E., Vitvitsky E.E. Comparison of the results of applying methods for solving the transport problem of linear programming // Crede Experto: transport, society, education, language. - 2021. - No. 2. - S. 6-23.

3. Melkumov V.N., Kuznetsov I.S., Kobelev V.N. The task of finding the optimal structure of heat networks // Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering. Construction and architecture. - 2011. - No. 2 (22). - S. 37-42.

4. Yashuzakova Sh., Katargina T., Pavlova T.A. Quality management of food production based on discrete-analytical mathematical models // Agrotechnics and energy supply. - 2018. - No. 2 (19). - S. 156-163.

5. Balabanova N.V., Valinurova A.A., Danilova S.V. Application of the problem of linear programming for solving particular problems of banking // Modern science-intensive technologies. Regional application. - 2022. - No. 1 (69). - S. 46-53.

6. Vasiliev S.N., Seledkin A.P. Synthesis of the efficiency function in multicriteria decision-making problems // Izvestiya AN SSSR. Those. Cybernetics. - 1980. - No. 3. - P.186-190.

7. S. I. Noskov and A. V. Lakeev, “RS-Solutions and Quasi-Solutions of an Interval System of Linear Algebraic Equations,” Bulletin of St. Petersburg University. Applied Mathematics. Computer science. Management processes. - 2021. - No. 3(17). - C. 262-276.

8. Noskov S.I. Point characterization of solution sets for interval systems of linear algebraic equations // Information technologies and mathematical modeling in the management of complex systems. - 2018. - No. 1 (1). - S. 8 - 13.

9. Noskov S.I., Vrublevsky I.P., Zayanchukovskaya V.O. Application of interval regression analysis for modeling transport objects // Bulletin of the Ural State University of Communications. - 2020. - No. 3 (47). - S. 45-52.

10. Noskov S.I. Construction of expert-statistical models based on incomplete data // T-Comm: Telecommunications and transport. - 2021. - T. 15. - No. 6. - S. 33-39.

11. Rastrigin L.A. Extreme control systems. - M.: Science. 1974. - 632 p.

12. Yu L., Zeleny M. The set of all nondominated solutions in linear cases and multicriteria simplex method //J. of Math. Anal. and Applic. -1975. -V.49. -#2. - P.430-460.