Receipt date: 
01.11.2020
Year: 
2020
Journal number: 
УДК: 
519.862.6
DOI: 

10.26731/2658-3704.2020.3(8).1-10

Article File: 
Pages: 
1
10
Abstract: 

The article is devoted to the development of an algorithm for constructing high-quality and well-interpreted regression models. The analysis of the program complex for the automation of the process of constructing regression models, intended for the implementation of the "competition" of models, is performed. Based on the analysis, a number of shortcomings of this software product were identified, in particular, the fact that the regression models obtained as a result of its work are often difficult to interpret. On the basis of the identified shortcomings, the concept of "well-interpreted qualitative model" was introduced for the first time. Requirements for such regressions are formulated. An efficient algorithm "Selection B" for the implementation of the "competition" models is considered. A fundamental block of algorithms for constructing well-interpreted qualitative regression models has been developed. To implement it, it is enough to modernize the effective algorithm "Selection B".

List of references: 

1. Noskov S.I. Tehnologija modelirovanija ob’ektov s nestabil'nym funkcionirovaniem i neopredelennost'ju v dannyh [Modeling technology for objects with unstable operation and data uncertainty]. Irkutsk, RIC GP «Oblinformpechat'» Publ., 1996. 321 р.

2. Noskov S.I., Bazilevskiy M.P. Programmnyj kompleks avtomatizacii processa postroenija regressionnyh modelej [Program complex for automating the process of constructing regression models]. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij [International Journal of Applied and Basic Research]. 2010, no. 1, pp. 93–94.

3. Bazilevskiy M.P., Noskov S.I. Metodicheskie i instrumental'nye sredstva postroenija nekotoryh tipov regressionnyh modelej [Methodological and instrumental means of constructing some types of regression models]. Sistemy. Metody. Tehnologii [Systems. Methods. Technology]. 2012, no. 1, vol. 13, pp. 80–87.

4. Baenhaeva A.V., Bazilevskiy M.P., Noskov S.I. Modelirovanie valovogo regional'nogo produkta Irkutskoy oblasti na osnove primeneniya metodiki mnozhestvennogo otsenivaniya regressionnykh parametrov [Modeling of gross regional product Irkutsk region of the basis of methods of multiple estimation of regression parameters]. Fundamental'nye issledovaniya [Fundamental research]. 2016, no. 10-1, pp. 9–14.

5. Baenhaeva A.V., Bazilevskiy M.P., Noskov S.I. Vybor strukturnoj specifikacii regressionnoj modeli valovogo regional'nogo produkta Irkutskoj oblasti [The choice of the structural specification of the regression model of the gross regional product of the Irkutsk region]. Informacionnye tehnologii i problemy matematicheskogo modelirovanija slozhnyh sistem [Information technologies and problems of mathematical modeling of complex systems]. 2016, no, 16, pp. 31–38.

6. Bazilevskiy M.P., Vrublevskiy I.P., Noskov S.I., Yakovchuk I.S. Srednesrochnoe prognozirovanie ekspluatatsionnykh pokazateley funktsionirovaniya Krasnoyarskoy zheleznoy dorogi [Medium-term forecasting of performance indicators of functioning of Krasnoyarsk railway]. Fundamental'nye issledovaniya [Fundamental research]. 2016, no. 10-3. – pp. 471-476.

7. Noskov S.I., Vrublevskiy I.P. Analiz regressionnoj modeli gruzooborota zheleznodorozhnogo transporta [Analysis of the regression model of rail freight turnover]. Vestnik transporta Povolzh'ja [Volga Transport Bulletin]. 2020, no. 1, vol. 79, pp. 86–90.

8. Noskov S.I., Vrublevskiy I.P. Regressionnaja model' dinamiki jekspluatacionnyh pokazatelej funkcionirovanija zheleznodorozhnogo transporta [Regression model of the dynamics of operational indicators of the functioning of railway transport]. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. 2016, no. 2, vol. 50, pp. 192–197.

9. Bazilevskiy M.P., Noskov S.I. Modelirovanie obstanovki s pozharami v sel'skih naselennyh punktah v uslovijah ih gazifikacii [Modeling the situation with fires in rural settlements in terms of their gasification]. Informacionnye tehnologii i problemy matematicheskogo modelirovanija slozhnyh sistem [Information technologies and problems of mathematical modeling of complex systems]. 2012, no, 10, pp. 65–71.

10. Bazilevskiy M.P., Noskov S.I. Tehnologija organizacii konkursa regressionnyh modelej [Technology for organizing a competition of regression models]. Informacionnye tehnologii i problemy matematicheskogo modelirovanija slozhnyh sistem [Information technologies and problems of mathematical modeling of complex systems]. 2009, no, 7, pp. 77–84.

11. Bazilevskiy M.P., Noskov S.I. Statisticheskij analiz kriterial'nyh matric pri organizacii "konkursa" regressionnyh modelej [Statistical analysis of criterion matrices when organizing a "competition" of regression models]. Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information technology and mathematical modeling in the management of complex systems]. 2019, no. 1, vol. 2, pp. 13–26.

12. Eliseeva I.I., Kurysheva S.V., Kosteeva T.V., etc. Jekonometrika [Econometrics]. Moscow, Finance and Statistics, 2007. 576 p.

13. Ferster A., Renz B. Metody korreljacionnogo i regressionnogo analiza [Correlation and regression analysis methods]. Moscow, Finance and Statistics, 1983. 303 p.

14. Bazilevskiy M.P. Povyshenie jeffektivnosti algoritma otbora po kriteriju determinacii informativnyh regressorov v regressionnyh modeljah [Improving the efficiency of the selection algorithm by the criterion of determination of informative regressors in regression models]. Prikladnaja matematika i informatika: sovremennye issledovanija v oblasti estestvennyh i tehnicheskih nauk : sbornik nauchnyh statej IV nauchno-prakticheskoj mezhdunarodnoj konferencii (shkoly-seminara) molodyh uchenyh: v dvuh chastjah [Applied mathematics and computer science: modern research in the field of natural and technical sciences: collection of scientific articles of the IV scientific and practical international conference (school-seminar) of young scientists: in two parts]. 2018, pp. 196–202.