Receipt date: 
01.05.2021
Year: 
2021
Journal number: 
УДК: 
519.852.33
DOI: 

10.26731/2658-3704.2021.3(11).25-34

Article File: 
Pages: 
25
34
Abstract: 

The purpose of this work is to conduct a comparative analysis of Microsoft Excel and LPSolve IDE programs using the example of solving transport problems of large dimensions. The technology for solving transport problems in Microsoft Excel and LPSolve IDE programs is considered. It has been established that Excel allows solving transport problems with a total number of variables not exceeding 200. Therefore, Excel cannot be considered a software designed for solving transport problems of large dimensions. Computational experiments were performed in Excel and LPSolve. It turned out that even when solving small-scale problems, the Excel program is inferior in performance to the LPSolve package. To automate the process of forming a mathematical model, a special converter program was developed in LPSolve. With the help of it, the time for entering large-scale transport problems in LPSolve was reduced. The LPSolve package coped with the solution of the problem of dimension 330 * 330, in which 108900 variables and 660 constraints, in just 245.75 seconds, so it can be considered an efficient software designed for solving transport problems of large dimensions.

List of references: 

1.

1. Gefan G.D. Ekonomiko-matematicheskie metody i modeli. Kurs matematiki, orientirovannyy na ispol'zovanie komp'yutera. Ch.1. Nekotorye metody issledovaniya operatsiy : ucheb. posobie dlya studentov ekonomicheskikh spetsial'nostey [Economic and mathematical methods and models. Computer oriented mathematics course. Part 1. Some Operations Research Methods: A Study Guide for Economics Students]. Irkutsk, IrGUPS, 2010. 208 p.

2. Kuznetsov A.V., Sakovich V.A., Kholod N.I. Vysshaya matematika. Matematicheskoe programmirovanie [Higher mathematics. Mathematical programming]. SPb., Izdatel'stvo "Lan'", 2013. 352 p.

3. Noskov S.I., Bazilevskij M.P. Postroenie regressionnyh modelej s ispol'zovaniem apparata linejno-bulevogo programmirovanija [Building regression models using the linear-Boolean programming apparatus]. Irkutsk, IrGUPS, 2018. 176 p.

4. Bazilevskiy M.P., Noskov S.I. Formalizatsiya zadachi postroeniya lineyno-mul'tiplikativnoy regressii v vide zadachi chastichno-bulevogo lineynogo programmirovaniya [Formalization of the problem of constructing linear multiplicative regression in the form of a partial boolean linear programming problem]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. 2017, no. 3, vol. 55, pp. 101-105.

5. Bazilevskij M.P. Otbor informativnyh regressorov s uchetom mul'tikollinearnosti mezhdu nimi v regressionnyh modeljah kak zadacha chastichno-bulevogo linejnogo programmirovanija [Selection of informative regressors taking into account the multicollinearity between them in regression models as a partial Boolean linear programming problem]. Modelirovanie, optimizacija i informacionnye tehnologii [Modeling, optimization and information technology]. 2018, no. 2, vol. 21, pp. 104-118.

6. Bazilevskij M.P. Svedenie zadachi otbora informativnyh regressorov pri ocenivanii linejnoj regressionnoj modeli po metodu naimen'shih kvadratov k zadache chastichno-bulevogo linejnogo programmirovanija [Reduction of the problem of selection of informative regressors when estimating a linear regression model using the least squares method to a partial boolean linear programming problem]. Modelirovanie, optimizacija i informacionnye tehnologii [Modeling, optimization and information technology]. 2018, no. 1, vol. 20, pp. 108-117.

7. Bazilevskij M.P. Otbor optimal'nogo chisla informativnyh regressorov po skorrektirovannomu kojefficientu determinacii v regressionnyh modeljah kak zadacha chastichno celochislennogo linejnogo programmirovanija [Selection of the optimal number of informative regressors by the corrected coefficient of determination in regression models as a partial integer linear programming problem]. Prikladnaja matematika i voprosy upravlenija [Applied Mathematics and Management Issues]. 2020, no. 2, pp. 41-54.

8. Noskov S.I., Ryazantsev A.I. Dvukhkriterial'naya transportnaya zadacha [Two-criteria transport problem]. T-Comm: Telekommunikatsii i transport [T-Comm: Telecommunications and Transportation]. 2019, vol. 13, no. 2, pp. 59-63.

9. Speranskiy D.V., Gorelik A.V., Orlov A.V. Zadachi optimizatsii resursov v oblasti tekhnicheskoy ekspluatatsii sistem avtomatiki i telemekhaniki [Resource optimization tasks in the field of technical operation of automation and telemechanics systems]. Avtomatika na transporte [Transport automation]. 2020, vol. 6, no. 2, pp. 184-203.

10. Furina K.O. O reshenii zadach bol'shoy razmernosti v pakete Mathcad na primere transportnoy zadachi [On solving large-scale problems in the Mathcad package using the example of a transport problem]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2015, no. № 1-1, pp. 1749.

11. LPSolve IDE [Electronic resource]. – Mode of access: https://sourceforge.net/projects/lpsolve/ (accessed 31.05.2021)