Receipt date: 
13.05.2022
Bibliographic description of the article: 

Bazilevskiy M.P., Oydopova A.B. Modeling of emissions of pollutants into the atmosphere of the Zabaikalsky kray // Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: ehlektronnyj nauchnyj zhurnal [Information technology and mathematical modeling in the management of complex systems: electronic scientific journal], 2022. No. 2(14). P. 8-18. DOI: 10.26731/2658-3704.2022.2(14).8-18 [Accessed 24/06/22]

Year: 
2022
Journal number: 
УДК: 
519.862.6
DOI: 

10.26731/2658-3704.2022.2(14).8-18

Article File: 
Pages: 
8
18
Abstract: 

The article is devoted to the problem of constructing regression models of the influence of the number of livestock and poultry, as well as the volume of industrial production, on the level of atmospheric air pollution in the Zabaikalsky kray. The traditional model of multiple linear regression is constructed using the least squares method. A model of multiple modular linear regression is proposed. It shows how the areas of definition of parameters contained under the module sign are located. Based on this, an algorithm for approximate estimation of modular regression using the least squares method has been developed. This algorithm was implemented as a script for the Gretl econometric package. With the help of the developed program, a model of modular linear regression was built, which turned out to be better in terms of the coefficient of determination than multiple regression. The interpretation of multiple and modular regressions is given.

List of references: 

1. Billions of people still breathe unhealthy air: new WHO data: 04.04.2022 URL https://www.who.int/news/item/04-04-2022-billions-of-people-still-breath...

2. Joshua S. Apte*, Michael Brauer, Aaron J. Cohen, Majid Ezzati, and C. Arden Pope III, Ambient PM2.5 Reduces Global and Regional Life Expectancy, August 22, 2018 https://pubs.acs.org/doi/10.1021/acs.estlett.8b00360

3. Otsenka vozdeistvia vrednykh vechestv na atmosferniy vozdukh [Assessment of the impact of emissions of harmful substances on atmospheric air : studies. Manual] / Yu. G. Kirsanov ; [scientific ed. M. G. Shishov] ; Ministry of Education and Science of the Russian Federation. Federation, Ural. feder. un‑T. — Yekaterinburg : Ural Publishing House. un-ta, 2018. — 110 p.

4. A. G. Ganul, I. G. Orlova. Normirovanie vybrosov: voprosov bolshe chem otvetov [Emissions rationing: there are more questions than answers] // Ecology of Production, No. 3, March 31, 2021, pp.66-77, Moscow, Russia

5. Shamber O.Yu., Golubnichy A.A. Dinamika zagryaznenia atmosfernogo vozdukha Zabaikaskogo kraya [Dynamics of atmospheric air pollution in the Trans-Baikal Territory (Chita)] // Modern scientific research and innovations. 2016. No. 2 [Electronic resource]. URL: https://web.snauka.ru/issues/2016/02/64459 (accessed: 04/13/2022).

6. Shurupov D.V. Pochemu i kak zhivotnovodstvo vredit ecologii [Why and how animal husbandry harms the environment] 14.09.2015 http://ecobeing.ru/articles/livestock-farming-harms-ecology/

7. Noskov S.I. Tehnologija modelirovanija ob’ektov s nestabil'nym funkcionirovaniem i neopredelennost'ju v dannyh [Modeling technology for objects with unstable operation and data uncertainty]. Irkutsk, RIC GP «Oblinformpechat'» Publ., 1996. 321 р.

8. Noskov S.I., Bazilevskiy M.P. Postroenie regressionnykh modeley s ispol'zovaniem apparata lineyno-bulevogo programmirovaniya [Constructing regression models using the linear Boolean programming apparatus]. Irkutsk, IrGUPS, 2018. 176 p.

9. Noskov S.I. Metod smeshannogo otsenivaniya parametrov lineynoy regressii: osobennosti primeneniya [Method of mixed estimation of linear regression parameters: application features]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii [Proceedings of Voronezh State University. Series: system analysis and information technologies]. 2021, no. 1, pp. 126-132.

10. Noskov S.I., Perfileva K.S. Modelirovanie ob"ema pogruzki na zheleznodorozhnom transporte metodom smeshannogo otsenivaniya [Application of the mixed estimation method in modeling the loading volume in railway transport]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya Tula State University. Technical sciences]. 2021, no. 2, pp. 148-153.

11. Bazilevskiy M.P., Noskov S.I. Programmnyy kompleks postroeniya lineynoy regressionnoy modeli s uchetom kriteriya soglasovannosti povedeniya fakticheskoy i raschetnoy traektoriy izmeneniya znacheniy ob"yasnyaemoy peremennoy [Program complex for linear regression model construction considering behavior consistency criterion of actual and calculated trajectories of explained variable value change]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [iPolytech Journal]. 2017, vol. 21, no. 9 (128), pp. 37-44.

12. Bazilevskiy M.P. Svedenie zadachi otbora informativnykh regressorov pri otsenivanii lineynoy regressionnoy modeli po metodu naimen'shikh kvadratov k zadache chastichno-bulevogo lineynogo programmirovaniya [Reduction the problem of selecting informative regressors when estimating a linear regression model by the method of least squares to the problem of partial-Boolean linear programming]. Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technologies]. 2018, vol. 6, no. 1 (20), pp. 108-117.

13. Bazilevskiy M.P. Otbor informativnykh regressorov s uchetom mul'tikollinearnosti mezhdu nimi v regressionnykh modelyakh kak zadacha chastichno-bulevogo lineynogo programmirovaniya [Subset selection in regression models with considering multicollinearity as a task of mixed 0-1 integer linear programming]. Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technologies]. 2018, vol. 6, no. 2 (21), pp. 104-118.

14. Bazilevskiy M.P. Otbor optimal'nogo chisla informativnykh regressorov po skorrektirovannomu koeffitsientu determinatsii v regressionnykh modelyakh kak zadacha chastichno tselochislennogo lineynogo programmirovaniya [Selection an optimal number of variables in regression models using adjusted coefficient of determination as a mixed integer linear programming problem]. Prikladnaya matematika i voprosy upravleniya [Applied Mathematics and Control Sciences]. 2020, no. 2, pp. 41-54.

15. Bazilevskiy M.P. Otbor znachimykh po kriteriyu St'yudenta informativnykh regressorov v otsenivaemykh s pomoshch'yu MNK regressionnykh modelyakh kak zadacha chastichno-bulevogo lineynogo programmirovaniya [Selection of informative regressors significant by Student’s t-test in regression models estimated using OLS as a partial Boolean linear programming problem]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii [Proceedings of Voronezh State University. Series: system analysis and information technologies]. 2021, no. 3, pp. 5-16.

16. Bazilevskiy M.P. Sposob opredeleniya parametra M v zadache chastichno-bulevogo lineynogo programmirovaniya dlya otbora regressorov v lineynoy regressii [Method for the M parameter determination in 0-1 mixed-integer linear programming problem for subset selection in linear regression]. Vestnik Tekhnologicheskogo universiteta [Bulletin of the Technological University]. 2022, vol. 25, no. 2, pp. 62-66.

17. O sostoyanii i ob okhrane okruzhauchei sredy Rossiskoy Federatsii v 2020 gody [On the state and environmental protection of the Russian Federation in 2020. State report]. — Moscow: Ministry of Natural Resources of Russia; Lomonosov Moscow State University, 2021. — 864 p.

18. O sostoyanii i ob okhrane okruzhauchei sredy Rossiskoy Federatsii v 2019 gody [On the state and environmental protection of the Russian Federation in 2019. State report]. - Moscow: Ministry of Natural Resources of Russia; Lomonosov Moscow State University, 2020. — 1000 p.

19. O sostoyanii i ob okhrane okruzhauchei sredy Rossiskoy Federatsii v 2016 gody [State report "On the state and environmental protection of the Russian Federation in 2016"]. – Moscow: Ministry of Natural Resources of Russia; NIA-Nature. – 2017. – 760 p.