Базилевский М.П., Ойдопова А.Б. Моделирование выбросов загрязняющих веществ в атмосферу Забайкальского края // «Информационные технологии и математическое моделирование в управлении сложными системами»: электрон. науч. журн. – 2022. – №2(14). – С.8-18 – DOI: 10.26731/2658-3704.2022.2(14).8-18 – Режим доступа: http://ismm-irgups.ru/toma/214-2022, свободный. – Загл. с экрана. – Яз. рус., англ. (дата обращения: 24.06.2022)
10.26731/2658-3704.2022.2(14).8-18
Статья посвящена проблеме построения регрессионных моделей влияния численности поголовья скота и птицы, а также объемов промышленного производства, на уровень загрязнения атмосферного воздуха в Забайкальском крае. С помощью метода наименьших квадратов построена традиционная модель множественной линейной регрессии. Предложена модель множественной модульной линейной регрессии. Для неё показано, как находятся области определения параметров, содержащихся под знаком модуля. На основе этого разработан алгоритм приближенного оценивания модульной регрессии с помощью метода наименьших квадратов. Этот алгоритм был реализован в виде скрипта для эконометрического пакета Gretl. С помощью разработанной программы была построена модель модульной линейной регрессии, оказавшаяся по величине коэффициента детерминации лучше, чем множественная регрессия. Дана интерпретация множественной и модульной регрессий.
1. Мурая Ольга Уже 99% населения планеты дышит опасным для здоровья воздухом // «Смотрим» 08.04.2022 URL: https://smotrim.ru/article/2700786
2. Джошуа С. Апте, Майкл Брауэр, Аарон Дж. Коэн, Маджид Эззати и К. Арден Поуп III, Окружающая среда cнижает ожидаемую продолжительность жизни во всем мире и в регионе, August 22, 2018 https://pubs.acs.org/doi/10.1021/acs.estlett.8b00360
3. Оценка воздействия выбросов вредных веществ на атмосферный воздух : учеб. пособие / Ю. Г. Кирсанов ; [науч. ред. М. Г. Шишов] ; М-во образования и науки Рос. Федерации, Урал. федер. ун‑т. — Екатеринбург: Изд‑во Урал. ун-та, 2018. — 110 с.
4. А. Г. Ганул, И. Г. Орлова. Нормирование выбросов: вопросов больше, чем ответов. // Экология производства, № 3, 31 марта 2021, с.66-77, Москва, Россия
5. Шамбер О.Ю., Голубничий А.А. Динамика загрязнения атмосферного воздуха Забайкальского края (г. Чита) // Современные научные исследования и инновации. 2016. № 2 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2016/02/64459 (дата обращения: 13.04.2022).
6. Шурупов Д.В. Почему и как животноводство вредит экологии. 14.09.2015 http://ecobeing.ru/articles/livestock-farming-harms-ecology/
7. Носков С.И. Технология моделирования объектов с нестабильным функционированием и неопределенностью в данных. – Иркутск: Облинформпечать, 1996. – 321 с.
8. Носков С.И., Базилевский М.П. Построение регрессионных моделей с использованием аппарата линейно-булевого программирования. – Иркутск: ИрГУПС, 2018. – 176 с.
9. Носков С.И. Метод смешанного оценивания параметров линейной регрессии: особенности применения // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. – 2021. – № 1. – С. 126-132.
10. Носков С.И., Перфильева К.С. Моделирование объема погрузки на железнодорожном транспорте методом смешанного оценивания // Известия Тульского государственного университета. Технические науки. – 2021. – № 2. – С. 148-153.
11. Базилевский М.П., Носков С.И. Программный комплекс построения линейной регрессионной модели с учетом критерия согласованности поведения фактической и расчетной траекторий изменения значений объясняемой переменной // Вестник Иркутского государственного технического университета. – 2017. – Т. 21. – № 9 (128). – С. 37-44.
12. Базилевский М.П. Сведение задачи отбора информативных регрессоров при оценивании линейной регрессионной модели по методу наименьших квадратов к задаче частично-булевого линейного программирования // Моделирование, оптимизация и информационные технологии. – 2018. – Т. 6. – № 1 (20). – С. 108-117.
13. Базилевский М.П. Отбор информативных регрессоров с учетом мультиколлинеарности между ними в регрессионных моделях как задача частично-булевого линейного программирования // Моделирование, оптимизация и информационные технологии. – 2018. – Т. 6. – № 2 (21). – С. 104-118.
14. Базилевский М.П. Отбор оптимального числа информативных регрессоров по скорректированному коэффициенту детерминации в регрессионных моделях как задача частично целочисленного линейного программирования // Прикладная математика и вопросы управления. – 2020. – № 2. – С. 41-54.
15. Базилевский М.П. Отбор значимых по критерию Стьюдента информативных регрессоров в оцениваемых с помощью МНК регрессионных моделях как задача частично-булевого линейного программирования // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. – 2021. – № 3. – С. 5-16.
16. Базилевский М.П. Способ определения параметра M в задаче частично-булевого линейного программирования для отбора регрессоров в линейной регрессии // Вестник Технологического университета. – 2022. – Т. 25. – № 2. – С. 62-66.
17. О состоянии и об охране окружающей среды Российской Федерации в 2020 году. Государственный доклад. — М.: Минприроды России; МГУ имени М.В.Ломоносова, 2021. — 864 с.
18. О состоянии и об охране окружающей среды Российской Федерации в 2019 году. Государственный доклад. — М.: Минприроды России; МГУ имени М.В.Ломоносова, 2020. — 1000 с.
19. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2016 году». – М.: Минприроды России; НИА-Природа. – 2017. – 760 с.