Receipt date: 
26.01.2022
Year: 
2022
Journal number: 
УДК: 
519.862.6
DOI: 

10.26731/2658-3704.2022.1(13).5-15

Article File: 
Pages: 
5
15
Abstract: 

The article is devoted to the study of interpretive characteristics of non-elementary linear regression models. An algorithm for the approximate estimation of such models using the ordinary least squares and one of the possible strategies for their construction are considered. Using the statistical data built-in Gretl econometric package, a non-elementary linear regression with seven explanatory variables was construct. For this, for the first time, the variation of the binary operations minimum and maximum was used. The resulting model is characterized by a low degree of multicollinearity and significantly outperformed linear regression in terms of the coefficient of determination. The interpretation of the resulting model made it possible to identify new patterns in the functioning of the dependent variable, which are not available when using classical linear regression.

List of references: 

1.

 

References

1. Pardoe I. Applied regression modeling. Wiley, 2020. 336 p.

2. Kleyner G.B. Proizvodstvennye funktsii: teoriya, metody, primenenie [Production functions: theory, methods, application]. Moscow, Finance and Statistics, 1986. 239 p.

3. Kleyner G.B. Ekonomika. Modelirovanie. Matematika. Izbrannye trudy [Economy. Modeling. Maths. Selected writings]. Moscow, TsEMI RAN, 2016. 856 p.

4. Gorbunov V.K. Proizvodstvennye funktsii: teoriya i postroenie [Production functions: theory and construction]. Ul'yanovsk, UlGU, 2013. 84 p.

5. Khatskevich G.A., Pronevich A.F., Chaykovskiy M.V. Dvukhfaktornye proizvodstvennye funktsii s zadannoy predel'noy normoy zameshcheniya [Two-factor production functions with given marginal rate of substitutions]. Ekonomicheskaya nauka segodnya [Economics today]. 2019, no. 10, pp. 169-181.

6. Bazilevskiy M.P., Noskov S.I. Algoritm postroeniya lineyno-mul'tiplikativnoy regressii [Algorithm for constructing a linear-multiplicative regression]. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern technologies. System analysis. Modeling]. 2011, no. 1, vol. 29, pp. 88-92.

7. Bazilevskiy M.P. Programmnyy kompleks postroeniya lineyno-mul'tiplikativnykh regressiy [Software package for constructing linear-multiplicative regressions]. Prikladnaya informatika [Applied Informatics]. 2018, no. 3, vol. 75, pp. 110-123.

8. Bazilevskiy M.P., Noskov S.I. Otsenivanie indeksnykh modeley regressii s pomoshch'yu metoda naimen'shikh moduley [Estimation of index regression models using the method of least modules]. Vestnik Rossiyskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie [Bulletin of the Russian New University. Series: Complex systems: models, analysis and control]. 2020, no. 1, pp. 17-23.

9. Bazilevskiy M.P. Postroenie stepenno-pokazatel'nykh regressionnykh modeley i ikh interpretatsiya [Construction of exponential regression models and their interpretation]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyy analiz i informatsionnye tekhnologii [Bulletin of the Voronezh State University. Series: System Analysis and Information Technology]. 2020, no. 4, pp. 19-28.

10. Bazilevskiy M.P. Postroenie stepenno-pokazatel'nykh i lineyno-logarifmicheskikh regressionnykh modeley [Construction of exponential and linear-logarithmic regression models]. Problemy upravleniya [Control Sciences]. 2021, no. 3, pp. 25-32.

11. Noskov S.I. Tehnologija modelirovanija ob’ektov s nestabil'nym funkcionirovaniem i neopredelennost'ju v dannyh [Modeling technology for objects with unstable operation and data uncertainty]. Irkutsk, RIC GP «Oblinformpechat'» Publ., 1996. 321 р.

12. Bazilevskiy M.P. Issledovanie vozmozhnosti postroeniya kusochno-lineynykh regressiy s nelineynymi granitsami pereklyucheniya [Study of the possibility of constructing piecewise linear regressions with non-linear switching boundaries]. System Analysis and Mathematical Modeling. 2021, no. 2, vol. 3, pp. 99-112.

13. Ivanova N.K., Lebedeva S.A., Noskov S.I. Identifikatsiya parametrov nekotorykh negladkikh regressiy [Identification of the parameters of some non-smooth regressions]. Informatsionnye tekhnologii i problemy matematicheskogo modelirovaniya slozhnykh sistem [Information technologies and problems of mathematical modeling of complex systems]. 2016, no. 17, pp. 107-110.

14. Noskov S.I., Khonyakov A.A. Primenenie funktsii riska dlya modelirovaniya ekonomicheskikh sistem [Application of the risk function for modeling economic systems]. Yuzhno-Sibirskiy nauchnyy vestnik [South Siberian Scientific Bulletin]. 2020, no. 5, vol. 33, pp. 85-92.

15. Noskov S.I., Khonyakov A.A. Programmnyy kompleks postroeniya nekotorykh tipov kusochno-lineynykh regressiy [A software package for constructing some types of piecewise linear regressions]. Informatsionnye tekhnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami [Information technology and mathematical modeling in the management of complex systems]. 2019, no. 3, vol. 4, pp. 47-55.

16. Bazilevskiy M.P. MNK-otsenivanie parametrov spetsifitsirovannykh na osnove funktsiy Leont'eva dvukhfaktornykh modeley regressii [OLS estimation of parameters of two-factor regression models specified on the basis of Leontiev functions]. Yuzhno-Sibirskiy nauchnyy vestnik [South Siberian Scientific Bulletin]. 2019, no. 2, vol. 26, pp. 66-70.

17. Bazilevskiy M.P. Otsenivanie lineyno-neelementarnykh regressionnykh modeley s pomoshch'yu metoda naimen'shikh kvadratov [Estimating Linear Non-Elementary Regression Models Using Least Squares]. Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and information technology]. 2020, no. 4, vol. 31, pp. 26-27.

18. Bazilevskiy M.P. Otbor informativnykh operatsiy pri postroenii lineyno-neelementarnykh regressionnykh modeley [Selection of informative operations in the construction of linear non-elementary regression models]. International Journal of Open Information Technologies. 2021, vol. 9, no. 5, pp. 30-35.

19. Molnar C. Interpretable machine learning. Lulu. com, 2020.

20. Miller T. Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence. 2019, vol. 267, pp. 1-38.

21. Kim B., Khanna R., Koyejo O. O. Examples are not enough, learn to criticize! criticism for interpretability. Advances in neural information processing systems. 2016, vol. 29.

22. Koroteev M. V. Obzor nekotorykh sovremennykh tendentsiy v tekhnologii mashinnogo obucheniya [Overview of some current trends in machine learning technology]. E-Management. 2018, no. 1, vol. 1, pp. 26-35.